Take our Survey

Reference: Nickerson DP, et al. (2010) Regulators of Vps4 ATPase activity at endosomes differentially influence the size and rate of formation of intralumenal vesicles. Mol Biol Cell 21(6):1023-32

Reference Help

Abstract


Recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomes regulates selective inclusion of transmembrane proteins into the lumenal vesicles of multivesicular bodies (MVBs). ESCRT-0, -I, and -II bind directly to ubiquitinated transmembrane cargoes of the MVB pathway, whereas polymerization of ESCRT-III at endosomes is thought to bend the membrane and/or provide the energetic force that drives membrane scission and detachment of vesicles into the endosome lumen. Disassembly of the ESCRT-III polymer and dissociation of its subunits from endosomes requires the Vps4 ATPase, the activity of which is controlled in vivo by regulatory proteins. We identify distinct spatiotemporal roles for Vps4-regulating proteins through examinations of subcellular localization and endosome morphology. Did2 plays a unique role in the regulation of MVB lumenal vesicle size, whereas Vtal and Vps60 promote efficient membrane scission and delivery of membrane to the endosome lumen. These morphological effects probably result from Vps4-mediated manipulations of ESCRT-III, because we show dissociation of ESCRT-0, -I, and -II from endosomes is not directly dependent on Vps4 activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Nickerson DP, West M, Henry R, Odorizzi G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference