Reference: Bouwman J, et al. (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28(1):43-53

Reference Help

Abstract


Intracellular accumulation of glycerol is essential for yeast cells to survive hyperosmotic stress. Upon hyperosmotic stress the gene expression of enzymes in the glycerol pathway is strongly induced. Recently, however, it was shown that this gene-expression response is not essential for survival of an osmotic shock [Mettetal JT et al. (2008) Science 319: 482-484 and Westfall PJ et al. (2008) Proc Natl Acad Sci 105: 12212-12217]. Instead, pure metabolic adaptation can rescue the yeast. The existence of two alternative mechanisms urged the question which of these mechanisms dominates time-dependent adaptation of wild-type yeast to osmotic stress under physiological conditions. The regulation of the glycerol pathway was analysed in aerobic, glucose-limited cultures upon addition of 1 M of sorbitol, leading to a hyperosmotic shock. In agreement with earlier studies, the mRNA levels of the glycerol-producing enzymes as well as their catalytic capacities increased. Qualitatively this induction followed a similar time course to the increase of the glycerol flux. However, a quantitative regulation analysis of the data revealed an initial regulation by metabolism alone. After only a few minutes gene expression came into play, but even after an hour, 80% of the increase in the glycerol flux was explained by metabolic changes in the cell, and 20% by induction of gene expression. This demonstrates that the novel metabolic mechanism is not just a secondary rescue mechanism, but the most important mechanism to regulate the glycerol flux under physiological conditions. Copyright (c) 2010 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Bouwman J, Kiewiet J, Lindenbergh A, van Eunen K, Siderius M, Bakker BM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference