Reference: Ramaswamy A and Ioshikhes I (2007) Global dynamics of newly constructed oligonucleosomes of conventional and variant H2A.Z histone. BMC Struct Biol 7:76

Reference Help

Abstract


Background: Complexes of nucleosomes, which often occur in the gene promoter areas, are one of the fundamental levels of chromatin organization and thus are important for transcription regulation. Investigating the dynamic structure of a single nucleosome as well as nucleosome complexes is important for understanding transcription within chromatin. In a previous work, we highlighted the influence of histone variants on the functional dynamics of a single nucleosome using normal mode analysis developed by Bahar et al. The present work further analyzes the dynamics of nucleosome complexes (nucleosome oligomers or oligonucleosomes) such as dimer, trimer and tetramer (beads on a string model) with conventional core histones as well as with the H2A.Z histone variant using normal mode analysis.

Results: The global dynamics of oligonucleosomes reveal larger amplitude of motion within the nucleosomes that contain the H2A.Z variant with in-planar and out-of-planar fluctuations as the common mode of relaxation. The docking region of H2A.Z and the L1:L1 interactions between H2A.Z monomers of nucleosome (that are responsible for the highly stable nucleosome containing variant H2A.Z-histone) are highly dynamic throughout the first two dynamic modes.

Conclusion: Dissection of the dynamics of oligonucleosomes discloses in-plane as well as out-of-plane fluctuations as the common mode of relaxation throughout the global motions. The dynamics of individual nucleosomes and the combination of the relaxation mechanisms expressed by the individual nucleosome are quite interesting and highly dependent on the number of nucleosome fragments present in the complexes. Distortions generated by the non-planar dynamics influence the DNA conformation, and hence the histone-DNA interactions significantly alter the dynamics of the DNA. The variant H2A.Z histone is a major source of weaker intra- and inter-molecular correlations resulting in more disordered motions.

Reference Type
Comparative Study | Journal Article
Authors
Ramaswamy A, Ioshikhes I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference