Reference: Casalini S, et al. (2008) Electron transfer and electrocatalytic properties of the immobilized methionine80alanine cytochrome c variant. J Phys Chem B 112(5):1555-63

Reference Help

Abstract


The M80A variant of yeast iso-1-cytochrome c (cytc), which features a noncoordinating Ala residue in place of the axial heme iron Met ligand, was chemisorbed on a gold electrode coated with 4-mercaptopyridine or carboxyalkanethiol self-assembled monolayers (SAM) and investigated by cyclic voltammetry at varying conditions of temperature, pH, and O2 concentration. The E degrees ' value (standard reduction potential for the heme Fe(III)/Fe(II) couple) of M80A cytc on both SAMs is of approximately -200 mV (vs the standard hydrogen electrode, SHE) at pH 7, which is more than 400 mV lower than that of native cytochrome c in the same conditions. The thermodynamics of Fe(III) to Fe(II) reduction and the kinetics of heterogeneous electron transfer (ET) are dominated by the presence of a hydroxide ion as the sixth axial heme iron ligand above pH 6. On both SAMs, protonation of the bound hydroxide ion is mainly responsible for the changes in these parameters at low pH, since the distances of ET between the heme and the electrode are found to be independent of pH in the range of 5-11. The invariance of the electrochemical features up to pH 11 indicates that no changes in heme iron coordination occur at high pH, at variance with native cytc. Most notably, immobilized M80A cytc is found to act as an efficient biocatalyst for O2 reduction from pH 5 to 11.0. This finding makes M80A cytc a suitable candidate as a constituent of a biocatalytic interface for O2 biosensing and opens the way for the exploitation of engineered cytochrome c in the bio-based detection of chemicals of environmental and clinical interest.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Casalini S, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference