Take our Survey

Reference: Brown CR, et al. (2008) The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 283(38):26116-27

Reference Help

Abstract

The gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is degraded in the vacuole when glucose is added to glucose-starved cells. Before it is delivered to the vacuole, however, FBPase is imported into intermediate carriers called Vid (vacuole import and degradation) vesicles. Here, using biochemical and genetic approaches, we identified a requirement for SEC28 in FBPase degradation. SEC28 encodes the epsilon-COP subunit of COPI (coat protein complex I) coatomer proteins. When SEC28 and other coatomer genes were mutated, FBPase degradation was defective and FBPase association with Vid vesicles was impaired. Coatomer proteins were identified as components of Vid vesicles, and they formed a protein complex with a Vid vesicle-specific protein, Vid24p. Furthermore, Vid24p association with Vid vesicles was impaired when coatomer genes were mutated. Kinetic studies indicated that Sec28p traffics to multiple locations. Sec28p was in Vid vesicles, endocytic compartments, and the vacuolar membrane in various mutants that block the FBPase degradation pathway. Sec28p was also found in vesicles adjacent to the vacuolar membrane in the ret2-1 coatomer mutant. We propose that Sec28p resides in Vid vesicles, and these vesicles converge with the endocytic pathway. After fusion, Sec28p is distributed on the vacuolar membrane, where it concentrates on vesicles that pinch off from this organelle. FBPase also utilizes the endocytic pathway for transport to the vacuole, as demonstrated by its presence in endocytic compartments in the Deltavph1 mutant. Taken together, our results indicate a strong connection between the Vid trafficking pathway and the endocytic pathway.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Brown CR, Wolfe AB, Cui D, Chiang HL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference