Reference: Mocciaro A and Schiebel E (2010) Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 123(Pt 17):2867-76

Reference Help

Abstract


CDC14 was originally identified by L. Hartwell in his famous screen for genes that regulate the budding yeast cell cycle. Subsequent work showed that Cdc14 belongs to a family of highly conserved dual-specificity phosphatases that are present in a wide range of organisms from yeast to human. Human CDC14B is even able to fulfill the essential functions of budding yeast Cdc14. In budding yeast, Cdc14 counteracts the activity of cyclin dependent kinase (Cdk1) at the end of mitosis and thus has important roles in the regulation of anaphase, mitotic exit and cytokinesis. On the basis of the functional conservation of other cell-cycle genes it seemed obvious to assume that Cdc14 phosphatases also have roles in late mitosis in mammalian cells and regulate similar targets to those found in yeast. However, analysis of the human Cdc14 proteins (CDC14A, CDC14B and CDC14C) by overexpression or by depletion using small interfering RNA (siRNA) has suggested functions that are quite different from those of ScCdc14. Recent studies in avian and human somatic cell lines in which the gene encoding either Cdc14A or Cdc14B had been deleted, have shown - surprisingly - that neither of the two phosphatases on its own is essential for viability, cell-cycle progression and checkpoint control. In this Commentary, we critically review the available data on the functions of yeast and vertebrate Cdc14 phosphatases, and discuss whether they indeed share common functions as generally assumed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Mocciaro A, Schiebel E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference