Take our Survey

Reference: Taylor M, et al. (2008) Microbial responses to solvent and alcohol stress. Biotechnol J 3(11):1388-97

Reference Help

Abstract


Increasing fuel prices and doubts over the long-term availability of oil are currently major global concerns. Such concerns have led to national policies and objectives to develop microbially produced alcohols as fuel additives or substitutes. However, in South Africa this solution poses the further dilemma of sourcing a suitable fermentative carbohydrate that will not impact negatively on the availability of staple foods. The solution lies in the use of lignocellulosic materials, currently a waste product of the food and agriculture industries, which could be used in conjunction with a catabolically suitable production strain. In the pursuit of lignocellulosic biofuel production, conventional fermentation strains have been shown to have limited catabolic versatility. However, catabolically versatile engineered strains and novel isolates engineered with ethanologenic pathways have subsequently been shown to exhibit limitations in solvent tolerance, hindering their full potential as economically viable production strains. A considerable volume of research has been reported on the general cellular mechanisms and physiological responses to solvent shock as well as adaptive changes responsible for solvent tolerant phenotypes in mutant progeny. Here we review a number of the more common cell responses to solvents with particular focus on alcohol tolerance.

Reference Type
Journal Article | Review
Authors
Taylor M, Tuffin M, Burton S, Eley K, Cowan D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference