Reference: Landstetter N, et al. (2010) Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast. OMICS 14(6):651-63

Reference Help

Abstract


Abstract Pyrrolidine dithiocarbamate (PDTC), a known inhibitor of NFkappaB activation, has antioxidative as well as antiviral activities. PDTC is effective against several virus families, indicating that its antiviral mechanism targets host rather than viral functions. To investigate its mode of action, we used baker's yeast as a simple eukaryotic model system and two types of genome-wide analysis. First, expression profiling using whole-genome DNA microarrays identifies more than 200 genes differentially regulated upon PDTC exposure. Interestingly, the Aft1-dependent iron regulon is a main target of PDTC, indicating a lack of iron availability. Moreover, the PDTC-caused zinc influx triggers a strong regulatory effect on zinc transporters due to the cytoplasmic zinc excess. Second, phenotypic screening the EUROSCARF collection for PDTC hypersensitivity identifies numerous mutants implicated in vacuolar maintenance, acidification as well as in transport, mitochondrial organization, and translation. Notably, the screening data indicate significant overlaps of PDTC-sensitive genes and those mediating zinc tolerance. Hence, we show that PDTC induces cytoplasmic zinc excess, eliciting vacuolar detoxification, which in turn, disturbs iron homeostasis and activates the iron-dependent regulator Aft1. Our work reveals a complex crosstalk in yeast ion homeostasis and the underlying regulatory networks.

Reference Type
Journal Article
Authors
Landstetter N, Glaser W, Gregori C, Seipelt J, Kuchler K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference