Take our Survey

Reference: Kottom TJ, et al. (2011) Pneumocystis carinii expresses an active Rtt109 histone acetyltransferase. Am J Respir Cell Mol Biol 44(6):768-76

Reference Help

Abstract


Species in the genus Pneumocystis can cause severe pneumonia in immune-compromised hosts. The identification of specific targets present in Pneumocystis species, but lacking in mammalian hosts, is paramount to developing new means to treat this infection. One such potential protein is Rtt109, which is a type of histone acetyltransferase (HAT) required for DNA replication in fungi, but not found in mammals. Sequence orthologues of Rtt109 are present in other fungi, but are absent in mammals, making it a potential pan-specific target against medically relevant fungi. Accordingly, we sought to identify the presence of an Rtt109 in P. carinii. A Pneumocystis carinii (Pc) Rtt109 165-bp partial sequence was initially identified from the incomplete P. carinii genome database. Subsequently, a full-length, 1,128-bp cDNA with homology to Saccharomyces cerevisiae Rtt109 (39% Basic Local Alignment Search Tool (BLASTP)) was cloned and characterized. Sequence analysis of PcRtt109 indicated that the P. carinii molecule contains the putative catalytic aspartate present in yeast. We further demonstrated that the PcRtt109 expressed in rtt109? S. cerevisiae cells restored H3-K56 acetylation and the sensitivity toward DNA-damaging agents of rtt109? mutant cells. Purified PcRtt109 had the ability to acetylate lysine-56 of histone H3, similar to the ability of Schizosaccharomyces pombe Rtt109 protein. The site-directed mutagenesis of PcRtt109 D84A, a potential regulatory site in the Rtt109 HAT family, abolished H3 acetylation, whereas a DD218/219AA mutation that compromised the activity of ScRtt109 had little effect, demonstrating similarities and differences in Pneumocystis PcRtt109 compared with yeast Saccharomyces cerevisiae Rtt109. These results indicate that P. carinii contains an Rtt109 HAT molecule, and represent the complete identification and characterization of a HAT molecule from this important opportunistic fungal pathogen.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Kottom TJ, Han J, Zhang Z, Limper AH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference