Take our Survey

Reference: Lykke-Andersen S, et al. (2009) Origins and activities of the eukaryotic exosome. J Cell Sci 122(Pt 10):1487-94

Reference Help

Abstract


The exosome is a multi-subunit 3'-5' exonucleolytic complex that is conserved in structure and function in all eukaryotes studied to date. The complex is present in both the nucleus and cytoplasm, where it continuously works to ensure adequate quantities and quality of RNAs by facilitating normal RNA processing and turnover, as well as by participating in more complex RNA quality-control mechanisms. Recent progress in the field has convincingly shown that the nucleolytic activity of the exosome is maintained by only two exonuclease co-factors, one of which is also an endonuclease. The additional association of the exosome with RNA-helicase and poly(A) polymerase activities results in a flexible molecular machine that is capable of dealing with the multitude of cellular RNA substrates that are found in eukaryotic cells. Interestingly, the same basic set of enzymatic activities is found in prokaryotic cells, which might therefore illustrate the evolutionary origin of the eukaryotic system. In this Commentary, we compare the structural and functional characteristics of the eukaryotic and prokaryotic RNA-degradation systems, with an emphasis on some of the functional networks in which the RNA exosome participates in eukaryotes.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
Lykke-Andersen S, Brodersen DE, Jensen TH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference