Take our Survey

Reference: Clemente-Ruiz M and Prado F (2009) Chromatin assembly controls replication fork stability. EMBO Rep 10(7):790-6

Reference Help

Abstract

During DNA replication, the advance of replication forks is tightly connected with chromatin assembly, a process that can be impaired by the partial depletion of histone H4 leading to recombinogenic DNA damage. Here, we show that the partial depletion of H4 is rapidly followed by the collapse of unperturbed and stalled replication forks, even though the S-phase checkpoints remain functional. This collapse is characterized by a reduction in the amount of replication intermediates, but an increase in single Ys relative to bubbles, defects in the integrity of the replisome and an accumulation of DNA double-strand breaks. This collapse is also associated with an accumulation of Rad52-dependent X-shaped molecules. Consistently, a Rad52-dependent--although Rad51-independent--mechanism is able to rescue these broken replication forks. Our findings reveal that correct nucleosome deposition is required for replication fork stability, and provide molecular evidence for homologous recombination as an efficient mechanism of replication fork restart.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Clemente-Ruiz M, Prado F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference