Take our Survey

Reference: Dunin-Horkawicz S and Lupas AN (2010) Measuring the conformational space of square four-helical bundles with the program samCC. J Struct Biol 170(2):226-35

Reference Help

Abstract


Four-helical bundles are the most abundant topological motif among helical folds. Their constituent helices show crossing angles that mainly cluster around +20 degrees (aligned) or -50 degrees (orthogonal). Bundles with all helices aligned are called 'square' and comprise four-helical coiled coils as their structurally most regular form. Since coiled coils can be described fully by parametric equations, they can serve as a reference point for quantifying the conformational space of all square bundles. To this end we have developed a program, samCC, which measures the deviation of a given bundle from an idealized coiled coil and decomposes this into axial rotation and axial, radial, and angular shifts. We present examples of analyses performed with the program and focus in particular on the axial rotation states of helices in coiled coils, in order to gain further insight into a proposed mechanism for transmembrane signal transduction, which involves a 26 degrees axial rotation of helices between a canonical coiled coil and a variant called the Alacoil. We find that, unlike expected from the mechanistic model, coiled coils show a continuum of axial rotation states, suggesting that the Alacoil does not represent a single, defined state. We also find that one of the originally proposed Alacoil proteins, Rop, in fact has canonical packing. SamCC is freely available as a web service athttp://toolkit.tuebingen.mpg.de/samcc.CI - Copyright 2010 Elsevier Inc. All rights reserved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Dunin-Horkawicz S, Lupas AN
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference