Take our Survey

Reference: Rowat AC, et al. (2009) Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci U S A 106(43):18149-54

Reference Help

Abstract


Cells within a genetically identical population exhibit phenotypic variation that in some cases can persist across multiple generations. However, information about the temporal variation and familial dependence of protein levels remains hidden when studying the population as an ensemble. To correlate phenotypes with the age and genealogy of single cells over time, we developed a microfluidic device that enables us to track multiple lineages in parallel by trapping single cells and constraining them to grow in lines for as many as 8 divisions. To illustrate the utility of this method, we investigate lineages of cells expressing one of 3 naturally regulated proteins, each with a different representative expression behavior. Within lineages deriving from single cells, we observe genealogically related clusters of cells with similar phenotype; cluster sizes vary markedly among the 3 proteins, suggesting that the time scale of phenotypic persistence is protein-specific. Growing lines of cells also allows us to dynamically track temporal fluctuations in protein levels at the same time as pedigree relationships among the cells as they divide in the chambers. We observe bursts in expression levels of the heat shock protein Hsp12-GFP that occur simultaneously in mother and daughter cells. In contrast, the ribosomal protein Rps8b-GFP shows relatively constant levels of expression over time. This method is an essential step toward understanding the time scales of phenotypic variation and correlations in phenotype among single cells within a population.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Rowat AC, Bird JC, Agresti JJ, Rando OJ, Weitz DA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference