Reference: Yu L, et al. (2010) Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(1):219-29

Reference Help

Abstract

To understand the response mechanisms of fungus cells upon exposure to the natural fungicide allicin, we performed commercial oligonucleotide microarrays to determine the overall transcriptional response of allicin-treated Saccharomyces cerevisiae strain L1190. Compared with the transcriptional profiles of untreated cultures, 147 genes were significantly upregulated, and 145 genes were significantly downregulated in the allicin-treated cells. We interpreted the microarray data with the hierarchical clustering tool, T-profiler. Major transcriptional responses were induced by allicin and included the following: first, Rpn4p-mediated responses involved in proteasome gene expression; second, the Rsc1p-mediated response involved in iron ion transporter activity; third, the Gcn4p-mediated response, also known as general amino acid control; finally, the Yap1p-, Msn2/4p-, Crz1p-, and Cin5p-mediated multiple stress response. Interestingly, allicin treatment, similar to mycotoxin patulin and artificial fungicide thiuram treatment, was found to induce genes involved in sulfur amino acid metabolism and the defense system for oxidative stress, especially DNA repair, which suggests a potential mutagenicity for allicin. Quantitative real-time reverse transcription-polymerase chain reaction was performed for selected genes to verify the microarray results. To our knowledge, this is the first report of the global transcriptional profiling of allicin-treated S. cerevisiae by microarray.

Reference Type
Journal Article
Authors
Yu L, Guo N, Meng R, Liu B, Tang X, Jin J, Cui Y, Deng X
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference