Take our Survey

Reference: Mishra A, et al. (2010) Both interaction surfaces within cohesin's hinge domain are essential for its stable chromosomal association. Curr Biol 20(4):279-89

Reference Help

Abstract

BACKGROUND: The cohesin complex that mediates sister chromatid cohesion contains three core subunits: Smc1, Smc3, and Scc1. Heterotypic interactions between Smc1 and Smc3 dimerization domains create stable V-shaped Smc1/Smc3 heterodimers with a hinge at the center and nucleotide-binding domains (NBDs) at the ends of each arm. Interconnection of each NBD through their association with the N- and C-terminal domains of Scc1 creates a tripartite ring, within which sister DNAs are thought to be entrapped (the ring model). Crystal structures show that the Smc1/Smc3 hinge has a toroidal shape, with independent "north" and "south" interaction surfaces on an axis of pseudosymmetry. The ring model predicts that sister chromatid cohesion would be lost by transient hinge opening. RESULTS: We find that mutations within either interface weaken heterodimerization of isolated half hinges in vitro but do not greatly compromise formation of cohesin rings in vivo. They do, however, reduce the residence time of cohesin on chromosomes and cause lethal defects in sister chromatid cohesion. This demonstrates that mere formation of rings is insufficient for cohesin function. Stable cohesion requires cohesin rings that cannot easily open. CONCLUSIONS: Either the north or south hinge interaction surface is sufficient for the assembly of V-shaped Smc1/Smc3 heterodimers in vivo. Any tendency of Smc proteins with weakened hinges to dissociate will be suppressed by interconnection of their NBDs by Scc1. We suggest that transient hinge dissociation caused by the mutations described here is incompatible with stable sister chromatid cohesion because it permits chromatin fibers to escape from cohesin rings.CI - Copyright 2010 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Mishra A, Hu B, Kurze A, Beckouet F, Farcas AM, Dixon SE, Katou Y, Khalid S, Shirahige K, Nasmyth K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference