Reference: Rainey MM, et al. (2010) The antidepressant sertraline targets intracellular vesiculogenic membranes in yeast. Genetics 185(4):1221-33

Reference Help

Abstract


Numerous studies have shown that the clinical antidepressant sertraline (Zoloft((R))) is biologically active in model systems, including fungi, which do not express its putative protein target, the serotonin/5-HT transporter, thus demonstrating the existence of one or more secondary targets. Here we show that in the absence of its putative protein target, sertraline targets phospholipid membranes that comprise the acidic organelles of the intracellular vesicle transport system by a mechanism consistent with the bilayer couple hypothesis. Based on a combination of drug-resistance selection and chemical-genomic screening, we hypothesize that loss of vacuolar ATPase activity reduces uptake of sertraline into cells, whereas dysregulation of clathrin function reduces the affinity of membranes for sertraline. Remarkably, sub-lethal doses of sertraline stimulate growth of mutants with impaired clathrin function. Ultrastructural studies of sertraline-treated cells revealed a phenotype that resembles phospholipidosis induced by cationic amphiphilic drugs in mammalian cells. Using reconstituted enzyme assays, we also demonstrated that sertraline inhibits phospholipase A1 and phospholipase D, exhibits mixed effects on phospholipase C and activates phospholipase A2. Overall, our study identifies two evolutionarily conserved membrane-active processes-vacuolar acidification and clathrin-coat formation-as modulators of sertraline's action at membranes.

Reference Type
Journal Article
Authors
Rainey MM, Korostyshevsky D, Lee S, Perlstein EO
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference