Reference: On T, et al. (2010) The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins 78(9):2075-89

Reference Help

Abstract

Model organisms such as yeast, fly, and worm have played a defining role in the study of many biological systems. A significant challenge remains in translating this information to humans. Of critical importance is the ability to differentiate those components where knowledge of function and interactions may be reliably inferred from those that represent lineage-specific innovations. To address this challenge, we use chromatin modification (CM) as a model system for exploring the evolutionary properties of their components in the context of their known functions and interactions. Collating previously identified components of CM from yeast, worm, fly, and human, we identified a "core" set of 50 CM genes displaying consistent orthologous relationships that likely retain their interactions and functions across taxa. In addition, we catalog many components that demonstrate lineage specific expansions and losses, highlighting much duplication within vertebrates that may reflect an expanded repertoire of regulatory mechanisms. Placed in the context of a high-quality protein-protein interaction network, we find, contrary to existing views of evolutionary modularity, that CM complex components display a mosaic of evolutionary histories: a core set of highly conserved genes, together with sets displaying lineage specific innovations. Although focused on CM, this study provides a template for differentiating those genes which are likely to retain their functions and interactions across species. As such, in addition to informing on the evolution of CM as a system, this study provides a set of comparative genomic approaches that can be generally applied to any biological systems.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
On T, Xiong X, Pu S, Turinsky A, Gong Y, Emili A, Zhang Z, Greenblatt J, Wodak SJ, Parkinson J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference