Reference: West GM, et al. (2010) Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc Natl Acad Sci U S A 107(20):9078-82

Reference Help

Abstract

Knowledge about the protein targets of therapeutic agents is critical for understanding drug mode of action. Described here is a mass spectrometry-based proteomics method for identifying the protein target(s) of drug molecules that is potentially applicable to any drug compound. The method, which involves making thermodynamic measurements of protein-folding reactions in complex biological mixtures to detect protein-drug interactions, is demonstrated in an experiment to identify yeast protein targets of the immunosuppressive drug, cyclosporin A (CsA). Two of the ten protein targets identified in this proof of principle work were cyclophilin A and UDP-glucose-4-epimerase, both of which are known to interact with CsA, the former through a direct binding event (K(d) approximately 70 nM) and the latter through an indirect binding event. These two previously known protein targets validate the methodology and its ability to detect both the on- and off-target effects of protein-drug interactions. The other eight protein targets discovered here, which include several proteins involved in glucose metabolism, create a new framework in which to investigate the molecular basis of CsA side effects in humans.

Reference Type
Journal Article
Authors
West GM, Tucker CL, Xu T, Park SK, Han X, Yates JR 3rd, Fitzgerald MC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference