Take our Survey

Reference: Daley JM, et al. (2010) Genetic interactions between HNT3/Aprataxin and RAD27/FEN1 suggest parallel pathways for 5' end processing during base excision repair. DNA Repair (Amst) 9(6):690-9

Reference Help

Abstract

Mutations in Aprataxin cause the neurodegenerative syndrome ataxia oculomotor apraxia type 1. Aprataxin catalyzes removal of adenosine monophosphate (AMP) from the 5' end of a DNA strand, which results from an aborted attempt to ligate a strand break containing a damaged end. To gain insight into which DNA lesions are substrates for Aprataxin action in vivo, we deleted the Saccharomyces cerevisiae HNT3 gene, which encodes the Aprataxin homolog, in combination with known DNA repair genes. While hnt3Delta single mutants were not sensitive to DNA damaging agents, loss of HNT3 caused synergistic sensitivity to H(2)O(2) in backgrounds that accumulate strand breaks with blocked termini, including apn1Delta apn2Delta tpp1Delta and ntg1Delta ntg2Delta ogg1Delta. Loss of HNT3 in rad27Delta cells, which are deficient in long-patch base excision repair (LP-BER), resulted in synergistic sensitivity to H(2)O(2) and MMS, indicating that Hnt3 and LP-BER provide parallel pathways for processing 5' AMPs. Loss of HNT3 also increased the sister chromatid exchange frequency. Surprisingly, HNT3 deletion partially rescued H(2)O(2) sensitivity in recombination-deficient rad51Delta and rad52Delta cells, suggesting that Hnt3 promotes formation of a repair intermediate that is resolved by recombination.CI - Copyright (c) 2010. Published by Elsevier B.V.

Reference Type
Journal Article
Authors
Daley JM, Wilson TE, Ramotar D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference