Take our Survey

Reference: Gandhi M, et al. (2010) GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr Biol 20(9):861-7

Reference Help

Abstract


Cell locomotion and endocytosis are powered by the rapid polymerization and turnover of branched actin filament networks nucleated by Arp2/3 complex [1]. Although a large number of cellular factors have been identified that stimulate Arp2/3 complex-mediated actin nucleation, only a small number of studies so far have addressed which factors promote actin network debranching [2-4]. Here, we investigated the function of a conserved homolog of ADF/cofilin, glia maturation factor (GMF) [5, 6]. We found that S. cerevisiae GMF (also called Aim7) localizes in vivo to cortical actin patches and displays synthetic genetic interactions with ADF/cofilin. However, GMF lacks detectable actin binding or severing activity and instead binds tightly to Arp2/3 complex. Using in vitro evanescent wave microscopy, we demonstrated that GMF potently stimulates debranching of actin filaments produced by Arp2/3 complex. Further, GMF inhibits nucleation of new daughter filaments. Together, these data suggest that GMF binds Arp2/3 complex to both "prune" daughter filaments at the branch points and inhibit new actin assembly. These activities and its genetic interaction with ADF/cofilin support a role for GMF in promoting the remodeling and/or disassembly of branched networks. Therefore, ADF/cofilin and GMF, members of the same superfamily, appear to have evolved to interact with actin and actin-related proteins, respectively, and to make mechanistically distinct contributions to the remodeling of cortical actin structures.CI - Copyright (c) 2010 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article
Authors
Gandhi M, Smith BA, Bovellan M, Paavilainen V, Daugherty-Clarke K, Gelles J, Lappalainen P, Goode BL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference