Reference: Toussaint M, et al. (2010) Differential participation of homologous recombination and nucleotide excision repair in yeast survival to ultraviolet light radiation. Mutat Res 698(1-2):52-59

Reference Help

Abstract


AIMS: The purpose of this research was to assess the ultraviolet light (UV) phenotype of yeast sirDelta cells vs. WT cells, and to determine whether de-silenced chromatin or the intrinsic pseudoploidy of sirDelta mutants contributes to their response to UV. Additional aims were to study the participation of HR and NER in promoting UV survival during the cell cycle, and to define the extent of the co-participation for both repair pathways. Main ethods: The sensitivity of yeast Saccharomyces cerevisiae to UV light was determined using a method based on automatic measurements of optical densities of very small (100mul) liquid cell cultures. Key indings: We show that pseudodiploidy of sirDelta strains promotes resistance to UV irradiation and that HR is the main mechanism that is responsible for this phenotype. In addition, HR together with GG-NER renders cells in the G2-phase of the cell cycle more resistant to UV irradiation than cells in the G1-phase, which underscore the importance of HR when two copies of the chromosomes are present. Nevertheless, in asynchronously growing cells NER is the main repair pathway that responds to UV induced DNA damage. Significance: This study provides detailed and quantitative information on the co-participation of HR and NER in UV survival of yeast cells.CI - Copyright (c) 2010. Published by Elsevier B.V.

Reference Type
Journal Article
Authors
Toussaint M, Wellinger RJ, Conconi A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference