Reference: Yao Y, et al. (2010) Ecm1 is a new pre-ribosomal factor involved in pre-60S particle export. RNA 16(5):1007-17

Reference Help

Abstract


In eukaryotes, ribosome biogenesis is a highly conserved process that starts in the nucleus and ends in the cytoplasm. In actively growing yeast cells, it is estimated that each nuclear pore complex (NPC) contributes to the export of about 25 pre-ribosomal particles per minute. Such an extremely active process requires several redundant export receptors for the pre-60S particles. Here, we report the identification of a novel pre-60S factor, Ecm1, which partially acts like Arx1 and becomes essential when the NPC function is affected. Ecm1 depletion, combined with the deletion of NPC components led to pre-60S retention in the nucleus. Functional links that we identified between Ecm1, 60S biogenesis, pre-60S export, and the NPC were correlated with physical interactions of Ecm1 with pre-60S particles and nucleoporins. These results support that Ecm1 is an additional factor involved in pre-60S export. While Ecm1 and Arx1 have redundant functions, overproduction of either one could not complement the absence of the other, whereas overproduction of Mex67 was able to partially restore the growth defect resulting from the absence of Ecm1 or Arx1. These data highlight the involvement of many factors acting together to export pre-60S particles.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yao Y, Demoinet E, Saveanu C, Lenormand P, Jacquier A, Fromont-Racine M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference