Reference: Rolland T, et al. (2010) Dynamic evolution of megasatellites in yeasts. Nucleic Acids Res 38(14):4731-9

Reference Help

Abstract


Megasatellites are a new family of long tandem repeats, recently discovered in the yeast Candida glabrata. Compared to shorter tandem repeats, such as minisatellites, megasatellite motifs range in size from 135 to more than 300 bp, and allow calculation of evolutionary distances between individual motifs. Using divergence based on nucleotide substitutions among similar motifs, we determined the smallest distance between two motifs, allowing their subsequent clustering. Motifs belonging to the same cluster are recurrently found in different megasatellites located on different chromosomes, showing transfer of genetic information between megasatellites. In comparison, evolution of the few similar tandem repeats in Saccharomyces cerevisiae FLO genes mainly involves subtelomeric homologous recombination. We estimated selective constraints acting on megasatellite motifs and their host genes, and found that motifs are under strong purifying selection. Surprisingly, motifs inserted within pseudogenes are also under purifying selection, whereas the pseudogenes themselves evolve neutrally. We propose that megasatellite motifs propagate by a combination of three different molecular mechanisms: (i) gene duplication, (ii) ectopic homologous recombination and (iii) transfer of motifs from one megasatellite to another one. These mechanisms actively cooperate to create new megasatellites, that may play an important role in the adaptation of Candida glabrata to its human host.

Reference Type
Journal Article
Authors
Rolland T, Dujon B, Richard GF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference