Reference: Deluna A, et al. (2010) Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol 8(3):e1000347

Reference Help

Abstract


Many duplicate genes maintain functional overlap despite divergence over long evolutionary time scales. Deleting one member of a paralogous pair often has no phenotypic effect, unless its paralog is also deleted. It has been suggested that this functional compensation might be mediated by active up-regulation of expression of a gene in response to deletion of its paralog. However, it is not clear how prevalent such paralog responsiveness is, nor whether it is hardwired or dependent on feedback from environmental conditions. Here, we address these questions at the genomic scale using high-throughput flow cytometry of single-cell protein levels in differentially labeled cocultures of wild-type and paralog-knockout Saccharomyces cerevisiae strains. We find that only a modest fraction of proteins (22 out of 202) show significant up-regulation to deletion of their duplicate genes. However, these paralog-responsive proteins match almost exclusively duplicate pairs whose overlapping function is required for growth. Moreover, media conditions that add or remove requirements for the function of a duplicate gene pair specifically eliminate or create paralog responsiveness. Together, our results suggest that paralog responsiveness in yeast is need-based: it appears only in conditions in which the gene function is required. Physiologically, such need-based responsiveness could provide an adaptive mechanism for compensation of genetic, environmental, or stochastic perturbations in protein abundance.

Reference Type
Journal Article
Authors
Deluna A, Springer M, Kirschner MW, Kishony R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference