Reference: Lin MC, et al. (2010) Overlapping and distinct functions for cofilin, coronin and Aip1 in actin dynamics in vivo. J Cell Sci 123(Pt 8):1329-42

Reference Help

Abstract


Actin-filament disassembly is crucial for actin-based motility, to control filament network architecture and to regenerate subunits for assembly. Here, we examined the roles of three actin cytoskeletal proteins, coronin, cofilin and Aip1, which have been suggested to combine in various ways to control actin dynamics by promoting or regulating disassembly. We studied their functions during the endocytosis process in budding yeast, where actin-filament dynamics at the cortical actin 'patch' contribute to the formation and movement of endocytic vesicles. We found that all three proteins were recruited during the late phase of the life of the actin patch. They all arrived at the same time, when actin and other actin-associated proteins were leaving the patch. Cofilin point mutations influenced the localization of coronin and Aip1, but the complete loss of coronin had no effect on localization of cofilin or Aip1. Using quantitative patch motion analysis and comparing mutant alleles, the phenotypes for mutations of the three genes showed some commonalities, but also some striking differences. Cofilin was clearly the most important; it displayed the most severe mutant phenotypes affecting actin-patch assembly and movement. Together, the results suggest that all three proteins work together to promote actin disassembly, but not in a simple way, and not with equal importance.

Reference Type
Journal Article
Authors
Lin MC, Galletta BJ, Sept D, Cooper JA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference