Reference: Steinboeck F, et al. (2010) The relevance of oxidative stress and cytotoxic DNA lesions for spontaneous mutagenesis in non-replicating yeast cells. Mutat Res 688(1-2):47-52

Reference Help

Abstract


Mutations arising during times of cell cycle arrest may considerably contribute to aging and cancerogenesis. Endogenous oxidative stress could be one of the major triggers for these mutations. We used Saccharomyces cerevisiae cells, arrested by starvation for the essential amino acid lysine, to study the occurrence of reactive oxygen species (ROS), abasic (AP) sites and double strand breaks (DSBs). Furthermore, we analyzed the mutation frequencies in resting wild type cells and in cells deficient for Apn1 (with an impaired base excision repair) or Dnl4 (with an inactivated non-homologous end joining (NHEJ) DSB repair pathway) by monitoring reversions of an auxotrophy-causing frameshift in the LYS2 gene. By fluorescence methods, we observed a distinct increase of ROS-affected cells in the course of starvation-induced cell cycle-arrest. In addition, we could reveal that AP sites and DSBs accumulated under these conditions. The frequency of spontaneous frameshift mutations in wild type cells was decreased to 50% upon addition of 6mM N-acetyl cysteine. However, this radical scavenger had no effect in Dnl4-deficient cells. Our results support the hypothesis that (via an active NHEJ DSB repair pathway) the incidence of spontaneous frameshift mutations in a cell cycle-arrested state is considerably governed by oxidative stress.CI - Copyright (c) 2010. Published by Elsevier B.V.

Reference Type
Journal Article
Authors
Steinboeck F, Hubmann M, Bogusch A, Dorninger P, Lengheimer T, Heidenreich E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference