Reference: Colavito S, et al. (2010) Promotion and regulation of homologous recombination by DNA helicases. Methods 51(3):329-335

Reference Help

Abstract


In eukaryotes, homologous recombination (HR) provides an important means to eliminate DNA double-stranded breaks and other chromosomal lesions. Accordingly, failure in HR leads to genomic instability and a predisposition to various cancer types. While HR is clearly beneficial for genome maintenance, inappropriate or untimely events can be harmful. For this reason, HR must be tightly regulated. Several DNA helicases contribute to HR regulation, by way of mechanisms that are conserved from yeast to humans. Mutations in several HR-specific helicases e.g. BLM and RECQ5, are either associated with cancer-prone human syndromes or engender the cancer phenotype in animal models. Therefore, delineating the role of DNA helicases in HR regulation has direct relevance to cancer etiology. Genetic, cytological, biochemical, and other analyses have shown that DNA helicases participate in early or late stages of HR, to disrupt nucleoprotein filaments that harbor the Rad51 recombinase or dissociate the D-loop intermediate made by Rad51, or to prevent undesirable events and/or minimize potentially deleterious crossover products. Moreover, the ensemble that harbors BLM and topoisomerase IIIalpha can dissolve the double-Holliday junction, a complex DNA intermediate generated during HR, to produce non-crossover products. These regulatory pathways function in parallel to promote the usage of the genome-preserving synthesis-dependent strand annealing HR pathway or otherwise suppress crossover formation.CI - Copyright (c) 2010. Published by Elsevier Inc.

Reference Type
Journal Article
Authors
Colavito S, Prakash R, Sung P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference