Reference: Postma L, et al. (2009) Surviving in the cold: yeast mutants with extended hibernating lifespan are oxidant sensitive. Aging (Albany NY) 1(11):957-60

Reference Help

Abstract


Metabolic activity generates oxidizing molecules throughout life, but it is still debated if the resulting damage of macromolecules is a causality, or consequence, of the aging process. This problem demands for studying growth- and longevity phenotypes separately. Here, we assayed a complete collection of haploid Saccharomyces cerevisiae knock-out strains for their capacity to endure long periods at low metabolic rates. Deletion of 93 genes, predominantly factors of primary metabolism, allowed yeast to survive for more than 58 months in the cold. The majority of these deletion strains were not resistant against oxidants or reductants, but many were hypersensitive. Hence, survival at low metabolic rates has limiting genetic components, and correlates with stress resistance inversely. Indeed, maintaining the energy consuming anti-oxidative machinery seems to be disadvantageous under coldroom conditions.

Reference Type
Journal Article
Authors
Postma L, Lehrach H, Ralser M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference