Reference: Fei L and Perrett S (2010) New insights into the molecular mechanism of amyloid formation from cysteine scanning. Prion 4(1):9-12

Reference Help

Abstract


Our laboratory recently reported the identification of a peptide region, QVNI, within the prion domain of the yeast protein Ure2 that may act as an initiation point for fibril formation.(1) This potential amyloid-forming region, which corresponds to residues 18-21 of Ure2, was initially identified by systematic cysteine scanning of the Ure2 prion domain. The point mutant R17C, and the corresponding octapeptide CQVNIGNR, were found to form fibrils rapidly under oxidative conditions due to the formation of a disulfide bond. Deletions within the QVNI sequence cause the fibril formation ability of R17C Ure2 to be inhibited. The aggregation propensity of this region is strongly modulated by its preceding residue: replacement of R17 with a hydrophobic residue promotes fibril formation in both full-length Ure2 and in the corresponding octapeptides. The wild-type octapeptide, RQVNIGNR, also forms fibrils, and is the shortest amyloid-forming peptide found for Ure2 to date. Interestingly, the wild-type octapeptide crystallizes readily and so provides a starting point towards obtaining high resolution structural information for the amyloid core of Ure2 fibrils.

Reference Type
Journal Article
Authors
Fei L, Perrett S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference