Reference: Glynn M, et al. (2010) Centromeres: assembling and propagating epigenetic function. Subcell Biochem 50:223-49

Reference Help

Abstract


The faithful replication of DNA and the accurate segregation of genomic material from one generation to the next is critical in the maintenance of genomic stability. This chapter will describe the structure and assembly of an epigenetically inherited locus, the centromere, and its role in the processes by which sister chromatids are evenly segregated to daughter cells. During the G2 phase of the cell cycle kinetochores are assembled upon the chromatids. During mitosis, kinetochores attach chromosome(s) to the mitotic spindle. The kinetochore structure serves as the interface between the mitotic spindle and the chromatids and it is at the kinetochore where the forces that drive chromatid separation are generated. Unattached chromosomes fail to satisfy the spindle assembly checkpoint (SAC), resulting in cell cycle arrest. The centromere is the locus upon which the kinetochore assembles, and centromeres themselves are determined by their unique protein composition. Apart from budding yeast, centromeres are not specified simply by DNA sequence, but rather through chromatin composition and architecture and are thus epigenetically determined. Centromeres are built on a specific nucleosome not found elsewhere in the genome, in which histone H3 is replaced with a homologue - CENP-A or CenH3. This domain is flanked by heterochromatin and is folded to provide a 3-dimensional cylinder-like structure at metaphase that establishes the kinetochore on the surface of the mitotic chromosomes. A large family of CENtromere Proteins (CENPs) associates with centromeric chromatin throughout the cell cycle and are required for kinetochore function. Unlike the bulk of histones, CENP-A is not assembled concurrently with DNA synthesis in S-phase but rather assembles into the centromere in the subsequent G1 phase. The assembly of CENP-A chromatin following DNA replication and the re-establishment of this network of constitutive proteins have emerged as critical mechanisms for understanding how the centromere is replicated during the cell cycle.

Reference Type
Journal Article | Review
Authors
Glynn M, Kaczmarczyk A, Prendergast L, Quinn N, Sullivan KF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference