Take our Survey

Reference: Ma L, et al. (2010) Proteins deleterious on overexpression are associated with high intrinsic disorder, specific interaction domains, and low abundance. J Proteome Res 9(3):1218-25

Reference Help

Abstract

In proteomics, there is a major challenge in how the functional significance of overexpressed proteins can be interpreted. This is particularly the case when examining proteins in cells or tissues. Here we have analysed the physicochemical parameters, abundance level, half-life and degree of intrinsic disorder of proteins previously overexpressed in the yeast Saccharomyces cerevisiae. We also examined the interaction domains present and the manner in which overexpressed proteins are, or are not associated with known complexes. We found a number of protein characteristics were strongly associated with deleterious phenotypes. These included protein abundance (where low abundance proteins tend to be deleterious on overexpression), intrinsic disorder (where a striking association was seen between percent disorder and degree of deleterious effect) and the number of likely domain-domain interactions. Furthermore we found a number of domain types, for example DUF221 and the ubiquitin interaction motif, that were present predominantly in proteins that are deleterious on overexpression. Together, these results provide strong evidence that particular types of proteins are deleterious on overexpression whereas others are not. These factors can be considered in the interpretation of protein expression differences in proteomic experiments.

Reference Type
Journal Article
Authors
Ma L, Pang CN, Li SS, Wilkins MR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference