Reference: Yu Q, et al. (2010) Saccharomyces cerevisiae Esc2p Interacts with Sir2p through a Small Ubiquitin-like Modifier (SUMO)-binding Motif and Regulates Transcriptionally Silent Chromatin in a Locus-dependent Manner. J Biol Chem 285(10):7525-36

Reference Help

Abstract

Saccharomyces cerevisiae Esc2p is a member of a conserved family of proteins that contain SUMO-like domains. It has been implicated in transcriptional silencing, and shown to interact with the silencing protein Sir2p in a two-hybrid analysis. However, little is known about how Esc2p regulates the structure of silent chromatin. We demonstrate here that ESC2 differentially regulates silent chromatin at telomeric, rDNA, and HM loci. Specifically, ESC2 is required for efficient telomeric silencing and Sir2p association with telomeric silent chromatin, and for silencing and maintenance of silent chromatin structure at rDNA. On the other hand, ESC2 negatively regulates silencing at HML and HMR, and destabilizes HML silent chromatin without affecting Sir2p association with chromatin. We present evidence that Esc2p is associated with both transcriptionally silent and active loci in the genome, and the abundance of Esc2p is not correlated with the chromatin state at a particular locus. Using affinity pull-down analyses, we show that Esc2p and Sir2p interact in vivo, and recombinant Esc2p and Sir2p interact directly. Moreover, we dissect Esc2p and identify a putative SUMO-binding motif that is necessary and sufficient for interacting with Sir2p and SUMO, and is required for the function of Esc2p in transcriptional silencing.

Reference Type
Journal Article
Authors
Yu Q, Kuzmiak H, Olsen L, Kulkarni A, Fink E, Zou Y, Bi X
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference