Take our Survey

Reference: Irazusta V, et al. (2010) Yeast frataxin mutants display decreased superoxide dismutase activity crucial to promote protein oxidative damage. Free Radic Biol Med 48(3):411-420

Reference Help

Abstract

Iron overload is involved in several pathological conditions, including Friedreich ataxia, a disease caused by decreased expression of the mitochondrial protein frataxin. In a previous study,we identified 14 proteins selectively oxidized in yeast cells lacking Yfh1, the yeast frataxin homolog. Most of these were magnesium-binding proteins. Decreased Mn-SOD activity, oxidative damage to CuZn-SOD, and increased levels of chelatable iron were also observed in this model. The present study explores the relationship between low SOD activity, the presence of chelatable iron and protein damage was investigated in more detail. We observed that addition of copper and manganese to the culture medium restored SOD activities prevented both oxidative damage and inactivation of magnesium-binding proteins. This protection was compartment-specific: recovery of mitochondrial enzymes required the addition of manganese while cytosolic enzymes were recovered by adding copper. Copper treatment also decreased Deltayfh1 sensitivity to menadione. Finally, a Deltasod1 mutant showed high levels of chelatable iron and inactivation of magnesium-binding enzymes. These results suggest that reduced superoxide dismutase activities contribute to the toxic effects of iron overloading. This would also apply to pathologies involving iron accumulation.

Reference Type
Journal Article
Authors
Irazusta V, Obis E, Moreno-Cermeno A, Cabiscol E, Ros J, Tamarit J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference