Take our Survey

Reference: Martinez-Bono B, et al. (2010) Yeast karyopherins Kap123 and Kap95 are related to the function of the cell integrity pathway. FEMS Yeast Res 10(1):28-37

Reference Help

Abstract

Abstract The characterization of mutant strains in the gene encoding karyopherin Kap123 has revealed several morphogenetic defects. Inactivation of KAP123 caused alterations in the actin cytoskeleton, resulting in hyperpolarization and resistance to the actin polymerization inhibitor latrunculin B. In fact, the level of actin filaments is increased in kap123 mutant cells. In addition to the defect in actin cytoskeleton, the kap123 mutant cells showed a weakened cell wall, cell lysis and a growth defect in either the presence of sodium dodecyl sulfate or at high temperatures, which is alleviated by osmotic stabilizers. These defects in cell integrity and the actin cytoskeleton suggested a relationship with the protein kinase C (PKC) cell integrity pathway. Slt2, the mitogen-activated protein kinase of the PKC cell integrity pathway, is constitutively activated in the absence of Kap123, which is consistent with the existence of cell integrity defects. Analysis of the subcellular localization of nuclear proteins involved in cell wall gene expression indicated that the localization of the Slt2 kinase and the transcription factors Rlm1, Swi6 and Paf1 was not affected by Kap123. Finally, we identified karyopherin Kap95 as the transport factor responsible for the nuclear import of Slt2 and Rlm1.

Reference Type
Journal Article
Authors
Martinez-Bono B, Quilis I, Zalve E, Igual JC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference