Reference: Siergiejuk E, et al. (2009) Cullin neddylation and substrate-adaptors counteract SCF inhibition by the CAND1-like protein Lag2 in Saccharomyces cerevisiae. EMBO J 28(24):3845-56

Reference Help

Abstract


Cullin-based E3 ubiquitin ligases are activated through covalent modification of the cullin subunit by the ubiquitin-like protein Nedd8. Cullin neddylation dissociates the ligase assembly inhibitor Cand1, and promotes E2 recruitment and ubiquitin transfer by inducing a conformational change. Here, we have identified and characterized Lag2 as a likely Saccharomyces cerevisiae orthologue of mammalian Cand1. Similar to Cand1, Lag2 directly interacts with non-neddylated yeast cullin Cdc53 and prevents its neddylation in vivo and in vitro. Binding occurs through a conserved C-terminal beta-hairpin structure that inserts into the Skp1-binding pocket on the cullin, and an N-terminal motif that covers the neddylation lysine. Interestingly, Lag2 is itself neddylated in vivo on a lysine adjacent to this N-terminal-binding site. Overexpression of Lag2 inhibits Cdc53 activity in strains defective for Skp1 or neddylation functions, implying that these activities are important to counteract Lag2 in vivo. Our results favour a model in which binding of substrate-specific adaptors triggers release of Cand1/Lag2, whereas subsequent neddylation of the cullin facilitates the removal and prevents re-association of Lag2/Cand1.

Reference Type
Journal Article
Authors
Siergiejuk E, Scott DC, Schulman BA, Hofmann K, Kurz T, Peter M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference