Take our Survey

Reference: Keating P, et al. (2009) Ipl1-dependent phosphorylation of Dam1 is reduced by tension applied on kinetochores. J Cell Sci 122(Pt 23):4375-4382

Reference Help

Abstract

The conserved Aurora B protein kinase (Ipl1 in Saccharomyces cerevisiae) is essential for ensuring that sister kinetochores become attached to microtubules from opposite spindle poles (bi-orientation) before anaphase onset. When sister chromatids become attached to microtubules from a single pole, Aurora B/Ipl1 facilitates turnover of kinetochore-microtubule attachments. This process requires phosphorylation by Aurora B/Ipl1 of kinetochore components such as Dam1 in yeast. Once bi-orientation is established and tension is applied on kinetochores, Aurora B/Ipl1 must stop promoting this turnover, otherwise correct attachment would never be stabilised. How this is achieved remains elusive: it might be due to dephosphorylation of Aurora B/Ipl1 substrates at kinetochores, or might take place independently, for example because of conformational changes in kinetochores. Here, we show that Ipl1-dependent phosphorylation at crucial sites on Dam1 is maximal during S phase and minimal during metaphase, matching the cell cycle window when chromosome bi-orientation occurs. Intriguingly, when we reduced tension at kinetochores through failure to establish sister chromatid cohesion, Dam1 phosphorylation persisted in metaphase-arrested cells. We propose that Aurora B/Ipl1-facilitated bi-orientation is stabilised in response to tension at kinetochores by dephosphorylation of Dam1, resulting in termination of kinetochore-microtubule attachment turnover.

Reference Type
Journal Article
Authors
Keating P, Rachidi N, Tanaka TU, Stark MJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference