Take our Survey

Reference: Taschner M, et al. (2010) A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol Cell Biol 30(2):436-46

Reference Help

Abstract


Upon DNA damage, eukaryotic cells activate a conserved signal transduction cascade known as the DNA damage checkpoint (DDC). We investigated the influence of DDC kinases on nucleotide excision repair in Saccharomyces cerevisiae and found that repair of both strands of an active gene is affected by Mec1, but not by the downstream checkpoint kinases, Rad53 and Chk1. Repair of the non-transcribed strand (by global genome repair) requires new protein synthesis, possibly reflecting the involvement of Mec1 in the activation of repair genes. In contrast, repair of the transcribed strand by transcription-coupled NER (TC-NER) occurs in the absence of new protein synthesis, and DNA damage results in Mec1-dependent, but Rad53-, Chk1-, Tel1, and Dun1-independent, phosphorylation of the TC-NER factor Rad26, a member of the Swi/Snf group of ATP-dependent translocases and yeast homologue of Cockayne Syndrome B. Mutation of the Rad26 phosphorylation site results in a decrease in the rate of TC-NER, pointing to direct activation of Rad26 by Mec1 kinase. These findings establish a direct role for Mec1 kinase in transcription-coupled repair, at least partly via phosphorylation of Rad26, the main transcription-repair coupling factor.

Reference Type
Journal Article
Authors
Taschner M, Harreman M, Teng Y, Gill H, Anindya R, Maslen SL, Skehel JM, Waters R, Svejstrup JQ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference