Reference: Fuchs BB and Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8(11):1616-25

Reference Help

Abstract


Fungi occupy diverse environments and are subjected to many extreme conditions. Among the stressful conditions faced by fungi are pH changes, osmotic changes, thermal changes, oxide radicals, nutrient deprivation, and exposure to chemicals. These adversities can be found either in the environment or in animal and human hosts. The cell wall integrity (CWI) pathway provides a means to fortify and repair damages to the cell wall in order to withstand stressful environments. The CWI pathway in comprised of cell wall stress sensors that lead to activation of a mitogen-activated protein kinase (MAPK) cascade. Signaling through the MAPK cascade leads to expression of transcription factors that facilitate biosynthesis of cell wall components and actin organization. Given the relatively limited number of components of the CWI pathway and the very diverse stimuli, there must be a means of expanding the pathway. To manage the diverse stress conditions, the CWI pathway cross talks with other pathways or proteins, and these cross talk events enhance the signaling capabilities of the CWI pathway. Lateral influences that facilitate maintaining the cell wall under stress conditions are TOR signaling, calcineurin signaling, the high-osmolarity glycerol pathway, the cyclic AMP-protein kinase A pathway, and additional proteins. In this article, we highlight several of the cross talk events that have been described for Saccharomyces cerevisiae and several other fungi.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Review
Authors
Fuchs BB, Mylonakis E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference