Reference: Vogtle FN, et al. (2009) Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139(2):428-39

Reference Help

Abstract

Many mitochondrial proteins are synthesized with N-terminal presequences that are removed by specific peptidases. The N-termini of the mature proteins and thus peptidase cleavage sites have only been determined for a small fraction of mitochondrial proteins and yielded a controversial situation for the cleavage site specificity of the major mitochondrial processing peptidase (MPP). We report a global analysis of the N-proteome of yeast mitochondria, revealing the N-termini of 615 different proteins. Significantly more proteins than predicted contained cleavable presequences. We identified the intermediate cleaving peptidase Icp55, which removes an amino acid from a characteristic set of MPP-generated N-termini, solving the controversial situation of MPP specificity and suggesting that Icp55 converts instable intermediates into stable proteins. Our results suggest that Icp55 is critical for stabilization of the mitochondrial proteome and illustrate how the N-proteome can serve as rich source for a systematic analysis of mitochondrial protein targeting, cleavage and turnover.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Vogtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, Kellermann J, Voos W, Sickmann A, Pfanner N, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference