Reference: Qi J, et al. (2009) Characterization of meiotic crossovers and gene conversion by whole-genome sequencing in Saccharomyces cerevisiae. BMC Genomics 10:475

Reference Help

Abstract


ABSTRACT: BACKGROUND: Meiotic recombination alters frequency and distribution of genetic variation, impacting genetics and evolution In the budding yeast, DNA double strand breaks (DSBs) and D loops form either crossovers (COs) or non-crossovers (NCOs), which occur at many sites in the genome. Differences at the nucleotide level associated with COs and NCOs enable us to detect these recombination events and their distributions. RESULTS: We used high throughput sequencing to uncover over 46 thousand single nucleotide polymorphisms (SNPs) between two budding yeast strains and investigated meiotic recombinational events. We provided a detailed analysis of CO and NCO events, including number, size range, and distribution on chromosomes. We have detected 91 COs, very close to the average number from previous genetic studies, as well as 21 NCO events and mapped the positions of these events with high resolution. We have obtained DNA sequence-level evidence for a wide range of sizes of chromosomal regions involved in CO and NCO events. We show that a large fraction of the COs are accompanied by gene conversion (GC), indicating that meiotic recombination changes allelic frequencies, in addition to redistributing existing genetic variations. CONCLUSIONS: This work is the first reported study of meiotic recombination using high throughput sequencing technologies. Our results show that high-throughput sequencing is a sensitive method to uncover at single-base resolution details of CO and NCO events, including some complex patterns, providing new clues about the mechanism of this fundamental process.

Reference Type
Journal Article
Authors
Qi J, Wijeratne AJ, Tomsho LP, Hu Y, Schuster SC, Ma H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference