Take our Survey

Reference: Maradeo ME and Skibbens RV (2009) The Elg1-RFC clamp-loading complex performs a role in sister chromatid cohesion. PLoS One 4(3):e4707

Reference Help

Abstract


It is widely accepted that of the four Replication Factor C (RFC) complexes (defined by the associations of either Rfc1p, Ctf18p, Elg1p or Rad24p with Rfc2p-Rfc5p), only Ctf18-RFC functions in sister chromatid cohesion. This model is based on findings that CTF18 deletion is lethal in combination with mutations in either CTF7(ECO1) or MCD1 sister chromatid cohesion genes and that ctf18 mutant cells exhibit cohesion defects. Here, we report that Elg1-RFC not only participates in cohesion but performs a function that is distinct from that of Ctf18-RFC. The results show that deletion of ELG1 rescues both ctf7(eco1) mutant cell temperature sensitivity and cohesion defects. Moreover, over-expression of ELG1 enhances ctf7(eco1) mutant cell phenotypes. These findings suggest that the balance of Ctf7p(Eco1p) activity depends on both Ctf18-RFC and Elg1-RFC. We also report that ELG1 deletion produces cohesion defects and intensifies the conditional phenotype of mcd1 mutant cells, further supporting a role for Elg1-RFC in cohesion. Attesting to the specificity of these interactions, deletion of RAD24 neither suppressed nor exacerbated cohesion defects in either ctf7(eco1) or mcd1 mutant cells. While parallel analyses failed to uncover a similar role in cohesion for Rad24-RFC, it is well known that Rad24-RFC, Elg1-RFC and Ctf18-RFC play key roles in DNA damage responses. We tested and found that Ctf7p(Eco1p) plays a significant role in Rad24-RFC-based DNA response pathways. In combination, these findings challenge current views and document new and distinct roles for RFC complexes in cohesion and for Ctf7p(Eco1p) in DNA repair.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Maradeo ME, Skibbens RV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference