Reference: Murakami H and Nicolas A (2009) Locally, meiotic double-strand breaks targeted by Gal4BD-Spo11 occur at discrete sites with a sequence preference. Mol Cell Biol 29(13):3500-16

Reference Help

Abstract


Meiotic recombination is initiated by DNA double-strand breaks (DSBs) that are catalyzed by the type II topoisomerase-like Spo11 protein. Locally, at recombination hot spots, Spo11 introduces DSBs at multiple positions within approximately 75 to 250 bp, corresponding to accessible regions of the chromatin. The molecular basis of this multiplicity of cleavage positions, observed in a population of meiotic cells, remains elusive. To address this issue, we have examined the properties of the Gal4BD-Spo11 fusion protein, which targets meiotic DSBs to regions with Gal4 binding sites (UAS). By single-nucleotide resolution mapping of targeted DSBs, we found that DSB formation was restricted to discrete sites approximately 20 nucleotides from the UAS, defining a "DSB targeting window." Thus, the multiplicity of cleavage positions at natural Spo11 hot spots likely represents binding of Spo11 to different distinct sites within the accessible DNA region in each different meiotic cell. Further, we showed that mutations in the Spo11 moiety affected the DSB distribution in the DSB targeting window and that mutations in the DNA at the Spo11 cleavage site affected DSB position. These results demonstrate that Spo11 itself has sequence preference and contributes to the choice of DSB positions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Murakami H, Nicolas A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference