Take our Survey

Reference: Kalocsay M, et al. (2009) Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell 33(3):335-43

Reference Help

Abstract

DNA double-strand breaks (DSBs) are acutely hazardous for cells, as they can cause genome instability. DSB repair involves the sequential recruitment of repair factors to the DSBs, followed by Rad51-mediated homology probing, DNA synthesis, and ligation. However, little is known about how cells react if no homology is found and DSBs persist. Here, by monitoring a single persistent DNA break, we show that, following DNA resection and RPA recruitment, Rad51 spreads chromosome-wide bidirectionally from the DSB but selectively only on the broken chromosome. Remarkably, the persistent DSB is later fixed to the nuclear periphery in a process that requires Rad51, the histone variant H2A.Z, its SUMO modification, and the DNA-damage checkpoint. Indeed, H2A.Z is deposited close to the break early but transiently and directs DNA resection, single DSB-induced checkpoint activation, and DSB anchoring. Thus, a persistent DSB induces a multifaceted response, which is linked to a specific chromatin mark.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kalocsay M, Hiller NJ, Jentsch S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference