Take our Survey

Reference: Bhattacharjee A, et al. (2009) In vivo protein tyrosine nitration in S. cerevisiae: Identification of tyrosine-nitrated proteins in mitochondria. Biochem Biophys Res Commun 388(3):612-7

Reference Help

Abstract


Protein tyrosine nitration (PTN) is a selective post translational modification often associated with pathophysiological conditions. Although yeast cells lack of mammalian nitric oxide synthase (NOS) orthologues, still it has been shown that they are capable of producing nitric oxide (NO). Our studies showed that NO or reactive nitrogen species (RNS) produced in flavohemoglobin mutant (Deltayhb1) strain along with the wild type strain (Y190) of S. cerevisiae can be visualized using specific probe 4, 5-diaminofluorescein diacetate (DAF-2DA). Deltayhb1 strain of S. cerevisiae showed bright fluorescence under confocal microscope that proves NO or RNS accumulation is more in absence of flavohemoglobin. We further investigated PTN profile of both cytosol and mitochondria of Y190 and Deltayhb1 cells of S. cerevisiae using two dimensional (2D) gel electrophoresis followed by western blot analysis. Surprisingly, we observed many immunopositive spots both in cytosol and in mitochondria from Y190 and Deltayhb1 using monoclonal anti-3-nitrotyrosine antibody indicating a basal level of NO or nitrite or peroxynitrite is produced in yeast system. To identify proteins nitrated in vivo we analyzed mitochondrial proteins from Y190 strains of S. cerevisiae. Among the eight identified proteins, two target mitochondrial proteins are aconitase and isocitrate dehydrogenase that are involved directly in the citric acid cycle. This investigation is the first comprehensive study to identify mitochondrial proteins nitrated in vivo.

Reference Type
Journal Article
Authors
Bhattacharjee A, Majumdar U, Maity D, Sarkar TS, Goswami AM, Sahoo R, Ghosh S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference