Reference: Tang F and Liu W (2010) An age-dependent feedback control model of calcium dynamics in yeast cells. J Math Biol 60(6):849-79

Reference Help

Abstract


The functional decline of selected proteins or organelles leads to aging at the intracellular level. Identification of these proteins or organelles is usually challenging to traditional single-factor approaches since these factors are inter-connected via feedback or feedforward controls. Establishing a feedback control model to simulate the interactions of multiple factors is an insightful approach to guide the search for proteins involved in aging. However, there are only a few mathematical models describing the age-dependent accumulation of DNA mutations, which are directly or indirectly induced by deterioration of the intracellular environment including alteration of calcium homeostasis, a contributor of aging. Thus, based on Cui and Kaandorp's model, we develop an age-dependent mathematical model for the calcium homeostasis in budding yeast Saccharomyces cerevisiae. Our model contains cell cycle-dependent aging factors and can qualitatively reproduce calcium shocks and calcium accumulations in cells observed in experiments. Using this model, we predict calcium oscillations in wild type, pmc1 Delta, and pmr1 Delta cells. This prediction suggests that Pmr1p plays a major role in regulating cytosolic calcium. Combining the model with our experimental lifespan data, we predict an upper-limit of cytosolic calcium tolerance for cell survival. This prediction indicates that, for aged cells (>35 generations), no pmr1 Delta can tolerate the cytosolic calcium concentration of 0.1 microM while a very small fraction (1%) of aged wild type cells (>50 generations) can tolerate a high cytosolic calcium concentration of 0.5 microM.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tang F, Liu W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference