Take our Survey

Reference: Nguyen HT and Nevoigt E (2009) Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: a proof of concept. Metab Eng 11(6):335-46

Reference Help

Abstract


Dihydroxyacetone (DHA) has numerous industrial applications. In this work, we pursue the idea to produce DHA from sugars in the yeast Saccharomyces cerevisiae, via glycerol as an intermediate. Firstly, three glycerol dehydrogenase (GDH) genes from different microbial sources were expressed in yeast. Among them, the NAD(+)-dependent GDH of Hansenula polymorpha showed the highest glycerol-oxidizing activity. DHA concentration in shake-flask experiments was roughly 100mg/lDHA from 20g/l glucose, i.e. five times the wild-type level. This level was achieved only when cultures were subjected to osmotic stress, known to enhance glycerol production and accumulation in S. cerevisiae. Secondly, DHA kinase activity was abolished to prevent conversion of DHA to dihydroxyacetone phosphate (DHAP). The dak1Deltadak2Delta double-deletion mutant overexpressing H. polymorpha gdh produced 700mg/l DHA under the same conditions. Although current DHA yield and titer still need to be optimized, our approach provides the proof of concept for producing DHA from sugars in yeast.

Reference Type
Journal Article
Authors
Nguyen HT, Nevoigt E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference