Reference: Ruan J, et al. (2009) An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data. BMC Genomics 10 Suppl 1(Suppl 1):S8

Reference Help

Abstract


Background: One of the most challenging tasks in the post-genomic era is to reconstruct the transcriptional regulatory networks. The goal is to reveal, for each gene that responds to a certain biological event, which transcription factors affect its expression, and how a set of transcription factors coordinate to accomplish temporal and spatial specific regulations.

Results: Here we propose a supervised machine learning approach to address these questions. We focus our study on the gene transcriptional regulation of the cell cycle in the budding yeast, thanks to the large amount of data available and relatively well-understood biology, although the main ideas of our method can be applied to other data as well. Our method starts with building an ensemble of decision trees for each microarray data to capture the association between the expression levels of yeast genes and the binding of transcription factors to gene promoter regions, as determined by chromatin immunoprecipitation microarray (ChIP-chip) experiment. Cross-validation experiments show that the method is more accurate and reliable than the naive decision tree algorithm and several other ensemble learning methods. From the decision tree ensembles, we extract logical rules that explain how a set of transcription factors act in concert to regulate the expression of their targets. We further compute a profile for each rule to show its regulation strengths at different time points. We also propose a spline interpolation method to integrate the rule profiles learned from several time series expression data sets that measure the same biological process. We then combine these rule profiles to build a transcriptional regulatory network for the yeast cell cycle. Compared to the results in the literature, our method correctly identifies all major known yeast cell cycle transcription factors, and assigns them into appropriate cell cycle phases. Our method also identifies many interesting synergetic relationships among these transcription factors, most of which are well known, while many of the rest can also be supported by other evidences.

Conclusion: The high accuracy of our method indicates that our method is valid and robust. As more gene expression and transcription factor binding data become available, we believe that our method is useful for reconstructing large-scale transcriptional regulatory networks in other species as well.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Ruan J, Deng Y, Perkins EJ, Zhang W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference