Reference: Alberghina L, et al. (2009) Molecular networks and system-level properties. J Biotechnol 144(3):224-33

Reference Help

Abstract


Molecular systems biology aims to describe the functions of complex biological processes through recursive integration of molecular analysis, modeling, simulation and theory. It focuses on networks that originate from interconnection of genes, proteins and metabolites whose dynamic interactions generate, as an emergent property of the system, the corresponding function. Although evolutionary optimized, intracellular biochemical parameters, such as the expression level of gene products or the affinity between two or more proteins, must have a permissible range that gives robustness against perturbations to the system. Using the yeast G(1)-to-S transition network as an example we show that sophisticated relations exist among network structure, emergent property and robustness. Different emergent properties are generated from the same network by changing the strength of its interactions, not only by altering expression level, but also through mono and multi-site phosphorylation/dephosphorylation. Besides, multi-site protein phosphorylation modules, widespread in cell cycle, may ensure robust and coherent timing of cell cycle transitions as it happens for the onset of DNA replication. In conclusion, the modulation of biological function/emergent property by modifying interaction strength provides an efficient, highly tunable device to regulate biological processes. Furthermore, the principles outlined herein may provide new insight to network analysis in drug discovery.

Reference Type
Journal Article
Authors
Alberghina L, Hofer T, Vanoni M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference