Take our Survey

Reference: D'Silva PR, et al. (2008) Interaction of the J-protein heterodimer Pam18/Pam16 of the mitochondrial import motor with the translocon of the inner membrane. Mol Biol Cell 19(1):424-32

Reference Help

Abstract


Import of proteins across the inner mitochondrial membrane through the Tim23:Tim17 translocase requires the function of an essential import motor having mitochondrial 70-kDa heat-shock protein (mtHsp70) at its core. The heterodimer composed of Pam18, the J-protein partner of mtHsp70, and the related protein Pam16 is a critical component of this motor. We report that three interactions contribute to association of the heterodimer with the translocon: the N terminus of Pam16 with the matrix side of the translocon, the inner membrane space domain of Pam18 (Pam18(IMS)) with Tim17, and the direct interaction of the J-domain of Pam18 with the J-like domain of Pam16. Pam16 plays a major role in translocon association, as alterations affecting the stability of the Pam18:Pam16 heterodimer dramatically affect association of Pam18, but not Pam16, with the translocon. Suppressors of the growth defects caused by alterations in the N terminus of Pam16 were isolated and found to be due to mutations in a short segment of TIM44, the gene encoding the peripheral membrane protein that tethers mtHsp70 to the translocon. These data suggest a model in which Tim44 serves as a scaffold for precise positioning of mtHsp70 and its cochaperone Pam18 at the translocon.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
D'Silva PR, Schilke B, Hayashi M, Craig EA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference