Take our Survey

Reference: Moore SP and Garfinkel DJ (2009) Functional analysis of N-terminal residues of ty1 integrase. J Virol 83(18):9502-11

Reference Help

Abstract


The Ty1 retrotransposon of Saccharomyces cerevisiae is comprised of structural and enzymatic proteins functionally similar to those of retroviruses. Despite overall sequence divergence, certain motifs are highly conserved. We have examined the Ty1 integrase (IN) zinc binding domain (ZBD) by mutating the definitive histidine and cysteine residues and thirteen residues in the intervening (X32) sequence between IN-H22 and IN-C55. Mutation of the zinc-coordinating histidine or cysteine residues reduced transposition by more than 4000-fold and led to IN and reverse transcriptase (RT) instability as well as inefficient proteolytic processing. Alanine substitution of the hydrophobic residues I28, L32, I37 and V45, in the X32 region reduced transposition 85-688-fold. Three of these residues, L32, I37 and V45 are highly conserved among retroviruses, although their effects on integration or viral infectivity have not been characterized. In contrast to the HHCC mutations, all the X32 mutants exhibited stable IN and RT, and protein processing and cDNA production were unaffected. However, GST pull-downs and intragenic complementation analysis of selected transposition-defective X32 mutants revealed decreased IN-IN interactions. Furthermore, virus-like particles (VLP) with in-L32A and in-V45A mutations did not exhibit substantial levels of concerted integration products in vitro. Our results suggest that the histidine/cysteine residues are important for steps in transposition prior to integration while the hydrophobic residues function in IN multimerization.

Reference Type
Journal Article
Authors
Moore SP, Garfinkel DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference